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I. Introduction

The )rk described here represents a combined theoretical and experimental effort

to address the mechanical behavior of interfaces in brittle fiber-reinforced brittle matrices.
In the three year program, it was the aim of the study to examine variables which allow for

toughness optimization of ceramic fiber-reinforced ceramic matrix composites. The results

highlighted below range the gambit from the development of analytical solutions to solve

the eigenstrain problem of both a single fiber (treated as a cylindrical inclusion) in an elastic
half-space to the experimental verification of toughening models for one fiber-reinforced

system. We have further examined the validity of a variety a test techniques which are used

to acquire the material properties for composite systems, and have designed a new single

fiber pullout technique reminiscent of actual fracture in fiber-reinforced composites.
Finally, additional tests on model fiber systems have been performed to measure

parameters, such as bridging forces, necessary for toughening models.

II. Highlights

(A) Inclusion Method Applied to Fiber-Reinforced Composite Problems

Exact solutions have been developed for axisymmetric stresses and displacement

fields caused by a solid cylindrical inclusion in the presence of a uniform eigenstrain in a
half space by using Green's functions. Green's functions were obtained for problems of

an elastic half space with a free surface or rigidly fixed surface for a homogeneous isotropic

elastic solid in earlier work.[ 1-3] The strain energy is also obtained in closed form. These

92 6 I" 92-15926



solutions are now of the form which allows for evaluation of load diffusion and absorption

capabilities in the matrix as a function of fiber length and material properties.(See Appendix

6.) Such solutions are necessary to examine problems of fiber debonding and pullout from

a matrix.

(B) Theoretical Fracture Maps

An energy method has been used to examine the amount of toughening which

results from the bridging, debonding, and sliding processes in ceramic matrix ceramic fiber

composites. Using the equivalent inclusion method, the crack is approximated as a thin

spheroid bridged by a series of fibers. In prior studies, this method was used to calculate a

"fracture map" which described conditions for crack propagation and arrest with and

without fiber reinforcement. The maps demonstrate the various contributions of bridging,

debonding and frictional sliding for both constant and Coulomb friction. Most recently,

this method has been extended to examine debond initiation stresses and bridging stresses

as a function of interface toughness, residual thermal stresses, volume fraction and fiber

radius.(See Appendix 3.) These stresses are compared to the fiber strength and hence,

describe conditions where debonding and pullout are favored over fiber fracture.

Calculations of bridging stresses are compared with those measured in the experimental

program described below.

(C) Bridging Forces by Inclined Fibers or Whiskers

In general, fracture toughening models neglect any fibers which are not aligned

parallel to the axis of applied stress under the supposition that they contribute little to the

toughening process. In order to test this assumption, model composite specimens

containing fibers of different inclination angle were fabricated with SiC monofilaments and

borosilicate glass matrices via hot-pressing. The double cleavage drilled compression

fracture mechanics specimen was used to characterize crack bridging by the inclined fibers.

During stable crack growth, the crack opening displacement is monitored using a computer

data acquisition system. The bridging force was extracted using a fracture mechanics

analysis involving finite element computation. Results are shown in Appendix I and these

represent the first quantitative experimental measurements of crack bridging by inclined

fibers in ceramic composites. At small crack opening displacements, the bridging forces

decrease with inclination angle. However, the bridging forces remain significant for large

inclination angles over long distances (many orders of magnitude of the fiber diameter)



indicating that the fibers, though undergoing a bending stress, do not automatically fracture

in the crack wake region. This is most likely due to matrix spalling, shown in Appendix

1, which diminishes the severity of the bending angle. These results are useful for

toughening models of both fiber- and whisker-reinforced systems where the fiber

reinforcement is not perpendicular to the crack plane.

(D) Fiber Debonding and Pullout using a Novel Pullout Test

In order to develop a basic understanding of the fiber debonding and pullout

process as a function of interfacial chemistry and interfacial roughness, a number of

interfacial (pullout) tests were evaluated. None were satisfactory to to adequately represent

crack growth through the matrix of a real composite coupled with fiber interception,

debonding, and pullout. In order to correct this deficiency, a modified single fiber pullout

test was designed. In this test, a stiff fixture holds the specimen in place: a single fiber

embedded along its entire length in matrix material. A pre-crack is started in the matrix and
grown to intercept the fiber. The resultant load displacement is shown in Appendix 2. The

curve shows the corresponding non-linear load displacement curve is indicative of

progressive debonding of the fiber, followed by complete debonding and finally, frictional

sliding. Pullout lengths of over 10 mm have been observed in the SiC

monofilament/borosilhcate glass system. Using the analytical methods of Kerans and
Parthasarathy [4] and Marshall [5], an interfacial fracture toughness (Gi) of approximately

0.2 J/m2 and a coefficient of friction (g) of 0.14 have been measured.

(E) Uniaxial Tensile Tests of Fiber Composites

In order to compare experimental results with earlier crack arrest theory (Section

B), studies on fiber-reinforced cements have been conducted. Specifically, the stress-

strain response of steel fiber-reinforced cements with varying fractions of fiber-

reinforcement were measured. Of particular interest is the composite stress at the bend-

over-point in the stress-strain curve. The theoretical treatment establishes a critical volume

fraction of reinforcement below which debonding precedes the bend-over-point in the

stress-strain response and above which nonlinearity occurs prior to debonding. Good

agreement is demonstrated between experiment and theory.
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VII. New Discoveries, Inventions, Applications, etc.

The main points from this work which could be used by the scientific and

engineering communities are as follows:

1. Solutions were developed for stress and displacement fields for circular cylindrical

inclusions adjoining the surface of a half-space. These solutions could be extended

to treat single fiber pullout from a matrix.

2. A new single fiber test technique has been designed to determine interfacial

properties of fiber-reinforced materials that more accurately reflects behavior in

full-scale composites than any previous single-fiber test.

3. The first quantitative measurements of bridging forces were collected for inclined

fibers in ceramic composites. Such measurements are imperative for accurately

modelling toughening in fiber-reinforced and whisker-reinforced materials.

4. "Fracture maps" were designed to establish conditions for crack arrest, debonding,

pullout, etc. in continuous fiber-reinforced ceramics.
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APPENDIX 1

Crack Bridging by Inclined Fibers/Whiskers
in Ceramic Composites

Hongda Cai*t and KT. Faber*
Department of Materials Science and Engineering
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Gaithersburg, Maryland 20899

Abstract

Crack bridging by inclined fibers has been studied in a brittle fiber-brittle matrix

model ceramic composite. Results of the fiber bridging force vs. the crack opening

displacement have been obtained for different fiber inclination angles using a fracture

mechanics approach. Localized matrix cracking at the fiber has been observed and

related to fiber inclination. The experimental results showing the effect of the fiber
inclination angle are discussed and compared with theoretical analyses to provide

insight into crack bridging by inclined fibers/whiskers. Implications for toughening by
whisker bridging will also be discussed. [Key words: crack bridging, fibers, whiskers,

inclination, composites]

For. Journal of the American Ceramic Society

Supported by the Air Force Office of Scientific Research under Funding No. G-AFOSR-89-0269.
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L Introduction

Significant increases of fracture toughness can be achieved by incorporating
whiskers into ceramic matrices. 1-9 Studies of whisker-reinforced ceramic composites
have established that the major toughening mechanism in these composites is crack

bridging by whiskers.6-9 A study of large-grain polycrystalline aluminas shows a
similar toughening mechanism: crack bridging by grains. 9,10 These studies 7-10 have
analyzed the mechanics of crack bridging by whiskers and grains. Due to the lack of
information regarding the dependence of the bridging force on the whiskertt inclination
angle, the reinforcements are assumed to be perpendicular to the crack plane7 9 10 or
a simplistic relation between the bridging force and the inclination angle is used. 11
Alternatively, the inclined whiskers are neglected because they are considered to fail
by bending and result in negligible toughening.8 In reality, the whiskers can be of any
orientation with respect to the crack plane in whisker-reinforced composites. The
large majority of whiskers are not perpendicular to the crack plane. A more realistic

model would consider whiskers of all orientations. Indeed, recent in situ observations
for a SiC-whisker reinforced alumina have indicated the importance of inclined
whiskers to the bridging process. 12 Therefore, it is essential to explore the effects of
the fiber/whisker inclination angle on the degree of crack bridging by each individual

fiber/whisker.

There have been a number of studies on the effect of fiber inclination angle on fiber
pullout in systems other than brittle fiber-brittle matrix compositeS.13 '17 However,
pullout of inclined fibers in brittle fiber-brittle matrix composites has received very
limited treatment until recently. Wetherhold" analyzed the pullout of a short brittle

fiber poorly bonded to the matrix. The simple analysis indicates that the frictional
pullout force is inversely proportional to the cosine of the inclination angle 0 of the

fiber with respect to the surface normal for a given fiber embedded length. This
relationship is assumed to apply for 0 less than a physically plausible critical angle
beyond which the fiber will fracture due to bending stresses.

Recently Leung and Li' S conducted an extensive finite element analysis to study
the effect of fiber inclination angle on the crack bridging stress in brittle fiber-brittle
matrix composites. Matrix spalling was incorporated into the analysis based upon

tiThe term whiskers may also refer to elongated grains and short fibers.
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observations in duct e fiber-brittle matrix composites. 17 The results for long fibers

show that the bridging stress decreases with an increase of the inclination angle for a

given crack opening displacement (COD). The maximum crack opening displacement
befo: - fiber failure is smaller for inclined fibers than aligned fibers. Nevertheless, the
bridging stress from inclined fibers remains significant, particularly in the near crack-
tip region where the crack opening displacements are small.

In spite of this progress in the theoretical aspect, there is little experimental work

on the effect of fiber inclination on the fiber pullout or crack bridging. The objective of

this work is to characterize experimentally crack bridging by inclined fibers/whiskers.

Based upon the results for a single inclined whisker, the toughening contribution due
to crack bridging of fibers/whiskers of distributed orientations can be estimated. The

results are expected to be useful in providing insight into the mechanism of whisker

bridging and in improving the present models of whisker bridging.

IL Fracture Mechanics Approach

For the present work, we chose to examine the effect of fiber inclination angle by

studying a fiber bridging a crack which closely simulates the conditions of crack

bridging in an actual composite. The double cleavage drilled compression (DCDC)
fracture mechanics specimen was used for this purpose.

The DCDC specimen was developed by Janssen for studying slow crack growth in

glasses. 19 The applied stress intensity Kapp for the DCDC specimen is related to the
measured crack length (a) and the applied compressive stress (a) as follows:

p g(a/r) (1)

where r is the central hole radius, g(a/r) is the dimensionless geometric function of the

crack length (a) and specimen geometry. The geometric function can be determined

experimentally by testing specimens of known toughness or obtained by theoretical
analyses. The advantages of the DCDC configuration (Fig. 1) include simple

specimen shape and loading geometry, stable crack propagation over a large region of
specimen length, and the fact that there is no need for crack guiding gro

3



The DCDC specimen has been used to study the crack interaction with an aligned
fiber 20 and to quantify the toughening effect of fibers with a ductiie interfacial layer.21

The possibilities for quantifying the effects of bridging fibers using the DCDC
specimen were demonstrated in terms of the traction exerted across the crack.20 As

shown schematically in Fig. 2(A), the crack is bridged by a fiber behind the crack tip.
The influence of bridging can be expressed in terms of the change in the stress
intensity:

AKb = -Kapp (2)

where Kc is the base toughness of the matrix and Kapp is the applied stress intensity
(Negative AKb indicates a closing action on the crack; positive AKb indicates an

opening action on the crack). Such results are useful for examining the toughening
effect of a single fiber or whisker. However, for quantitative analyses of the

propagation of a bridged crack, the key information is the relation between the
bridging force and the crack opening displacement.7,8,1, 1 8 ,22

The crack opening displacement (COD) can be measured directly using a
displacement gauge. The bridging force must be extracted from the measured change
in the stress intensity. It is necessary to establish the relation between the change in

the stress intensity and the bridging force in the DCDC fracture mechanics specimen.
The bridging action of a fiber behind the crack tip can be approximated by self-

equilibrated traction forces (Pit) acting at a bridging distance (b) behind the crack tip,
as illustrated in Fig. 2(B). For bridging forces very close to the crack tip (small

bridging distance) the near tip solution can be used. For general values of the bridging
distance, the crack bridging relation in the DCDC specimen is not available. A finite
element analysis was used to obtain the relationship between the change in the
stress intensity and traction forces. In this analysis, the change in the stress
intensity (AK) was computed as a function of the bridging force (Pit), the crack length
(a), and the bridging distance (b). For the given DCDC specimen geometry, the
normalized change in stress intensity [AK4r/(P/t)] is a function of the normalized

crack length (air) and the normalized bridging distance (b/r). Typical results obtained
by the finite element analysis are shown in Fig. 3 for three values of normalized crack
length. From these numerical calculations, the crack bridging force was computed
from the experimentally measured change in the stress intensity.

4



M1. Experimental Procedure

The model composite system consists of SCS-6t silicon carbide fibers and a
borosilicate glasstt matrix. Specimen fabrication procedures were similar to those
used by Butler et al.23 The fibers were degreased in 1,1, 1-trichloroethane and then

rinsed with acetone and ethanol. The glass plates were washed with acetone and
ethanol. Both the fibers and the glass plates were then dried at about 1100C for 60
minutes. The fibers were sandwiched between two glass plates. The sandwich
assembly was placed in a hot press,§ which was then evacuated using a mechanical
pump. The temperature was raised to 730°C before the hot pressing pressure was

increased slowly to 1 MPa and held for 60 minutes. Specimens with fiber inclination
angles from 0 to 40 degrees were fabricated. Each specimen with two fibers was
machined to a DCDC specimen with the fibers located symmetrically on both sides of
the center hole. There were four specimens for each fiber inclination angle. The
specifications of the DCDC specimen dimensions are given in Fig. 1. For present
work, the DCDC specimen with the Janssen geometry (HI W = 10, W/r = 3.75)19 was

used with the center hole radius of 0.795 mm and the specimen thickness of 3.5 mm.

Before testing, each DCDC specimen was precracked at the top and the bottom

edges of the hole where the cracks would nucleate and grow.M A Knoop indenter with
an indentation load of 29.4 N was used for this purpose. Compression testing of the
DCDC specimen was carried out on an Instron universal testing machine1 at a

crosshead speed of 0.025 mm/min. The testing was conducted in a controlled
environment of flowing dry nitrogen gas to minimize the effect of slow crack growth on

the measured crack resistance of the glass. A crack opening displacement (COD)
gauge was attached to measure the COD at the fiber location. A computerized data

acquisition system was used to collect the crack length, load and crack opening
displacement data. The crack length was monitored using a travelling microscope
connected to a digital micrometer. Once the crack tip was located, the crack length,
load and COD data were collected simultaneously. A data point was collected every

tSilicon Carbide/Carbon fiber, AVCO Specialty Materials, Lowell, MA.
#Soda borosilicate glass, Coming Code 7740, Corning Glass Works, Coming, NY.
§Vacuum hot jress, GCA/Vacuum Industries, Inc.
§§It is not necessary to pre-crack the DCDC fracture mechanics opecimen. To the authors'

knowledge, none of previous studies pre-cracked the DCDC specimen. However, pre-cracking has the
advantage of ensuring that cracks to starting at the center line. Without pre-cracking, the crack can
propagate unstably to much greater distances than with pre-cracking, particularly if the load train
is not very stiff.

lInstron Model 1125, Instron, Corp., Canton, MA.
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few seconds. Tests were stopped when the crack grew to a length of 13 to 15 times of

the center hole radius. The maximum COD at the fiber was in the order of 10 im.

Borosilicate glass specimens without fibers were tested to obtain the dimensionless

geometric function g(a / r) for the DCDC specimen and for comparison purpose.

After mechanical testing, the specimen was bonded with a cyanoacrylate-based

adhesive11 to a glass slide and a section of the specimen containing one of the fibers

was cut with a slow speed diamond saw. After the adhesive was removed with

acetone in an ultrasonic bath, two pieces of matrix glass held together by a bridging

fiber were obtained. These two pieces of glass were then separated for microscopic

examination. The fracture surface near the fiber was examined using scanning

electron microscopy (SEM) to observe possible matrix spalling related to pullout of

inclined fibers.

IV. Results

The experimentally determined dimensionless geometric function of the DCDC
specimen is shown in Fig. 4 for the crack length range of interest. Results were

obtained from two tests and provide almost identical geometric functions. This

calibration function was used to compute the applied stress intensity for all other

tests using Eq. (1).

The applied stress intensity vs. the crack length is presented in Fig. 5 for the

cases: (A) without fibers, (B) fibers at 0 = 00, (C) fibers at 0 = 240, (D) fibers at

0= 400. In the case without fibers, the applied stress intensity is nearly independent
of the crack length and is equal to the base toughness of the borosilicate glass. In the

presence of bridging fibers, the applied stress intensity increases as the crack

intercepts and passes the fiber, as shown in Fig. 5(B), (C) and (D). The results

indicate a trend of decreasing bridging force with increasing inclination angle. Another

interesting observation is that the applied stress intensity tends to decrease slightly

as the crack approaches and passes the fiber before Kapp increases again for the

case of large inclination angles. This was consistently observed in a number of tests

with large fiber inclination angles and is not well understood. Fiber inclination might

have induced a mode II stress intensity which promotes crack growth.

11DuroTM Quick Gel M super glue, Loctite Corp., Cleveland, OH.
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Based upon the applied stress intensity data, the equivalent bridging force (as
defined in Fig. 2(B)) was computed using the finite element analysis described briefly
in Section II. The crack bridging information consists of the bridging force as a
function of the corresponding crack opening displacement. Examples of the bridging

force vs. COD are presented in Fig. 6 for fiber inclination angles of 0, 8, 24, and 400.
For small fiber inclination angles, the bridging force levels off at a COD value of
approximately 8 pm, indicating that fiber frictional sliding over the embedded length
starts at this point. Comparison of these results shows a trend of decreasing bridging
force with an increase in the fiber inclination angle in the range of COD studied, as
expected from the stress intensity results.

The bridging force is plotted as a function of the inclination angle for different
crack opening displacements in Fig. 7. The results show a general trend that the
bridging force decreases with increasing fiber inclination angle for crack opening
displacements between 2 and 10 pm. No data is available for greater crack opening
displacements due to two limitations: 1) specimen size and 2) the crack length at
which the test was stopped to prevent specimen shattering at high compressive
stresses.

SEM micrographs of the matrix at the fiber are shown in Fig. 8 for fiber inclination
angles of 80, 240 and 400. For the fiber inclination angle of 80, fiber pullout occurred as
the two pieces of matrix glass were separated. Little matrix cracking was observed
(Fig. 8(A)). For large inclination angles, the fiber failed as the two pieces of matrix

glass (held together by the fiber) were separated in the direction normal to the crack
plane. Localized matrix cracking was observed (Fig. 8 (B) and (C)). The observed

cracking pattern looks somewhat similar to cracks generated by Vickers indentation.
The severity of matrix cracking increases with the fiber inclination angle, although

part of the matrix cracking apparently has resulted from SEM sample preparation.
In another observation, the matrix glass pieces were separated in the fiber direction

using a fixture in order to minimize matrix cracking due to SEM sample preparation.
This observation revealed much less severe matrix cracking. Further, the lateral
crack did not intercepted the surface.

7



V. Discussion

We have studied the effect of fiber inclination on crack bridging in a SiC fiber-
glass matrix model composite system. The results show that the bridging force by
inclined fibers decreases with increasing fiber inclination angle in he range of crack
opening displacement observed. This finding is in qualitative agreement with Leung
and Li's theoretical analysis.' 8 . Leung and Li have shown that the total crack
bridging force consists of contributions due to: 1) the bending force on the inclined fiber
and 2) fiber pullout.'8 The crack bridging force is the sum of these two contributions
in a direction normal to the crack plane. The contribution from fiber bending
increases with the fiber inclination angle initially but decreases at higher angle. The
effect of localized matrix cracking relax the more heavily stressed fibers and thus
reduce the difference between fibers lying at different angles. The fiber pullout
contribution in the direction normal to the crack plane decreases with the inclination
angle. Leung and Li' s pointed out that for most composites the bridging force is
usually dominated by the fiber pullout component. Therefore, the total bridging force
decreases with the fiber inclination angle (see Ref. 18 for details).

It is expected that bending of inclined fibers eventually leads to fiber failure as the
crack opening displacement increases. Nevertheless, the present study shows that
the bridging force for inclined fibers is nowhere near zero. For example, crack bridging
by fibers inclined by 400 is sustained more than 6 mm behind the crack tip (or more
than 40 times the fiber diameter). Further crack propagation and large COD's would
be required for fiber fracture. In actual whisker-reinforced materials, the majority of
the whiskers are inclined with respect to the crack plane. Therefore, bridging by
inclined whiskers is expected to make up the main portion of toughening in the near
tip wake region. If the present results can be extended to whisker-reinforced ceramic
composites, toughening predictions based on aligned fibers would represent
overestimates. In addition, the dependence of bridging force on the whisker inclination
angle and crack opening displacement also has a profound effect on the the shape of
the crack resistance of the composite. Compared with predictions with aligned
whiskers, the slope of the initial part of crack resistance curve would be smaller if the
bridging force at a given COD is reduced as a result of whisker inclination.

Comparison of matrix cracking between smaller and large fiber inclination angles
in Fig. 8 shows that localized matrix cracking is related to fiber inclination. It is

8



observed that larger fiber inclination angles result in a greater degree of matrix

cracking. Matrix cracking reduces the severity of fiber bending and has the benefit of

delaying fiber breakage.18 Accordingly, the fiber can maintain integrity a greater
distance behind the crack tip as a result of matrix cracking. At the same, matrix
cracking also modifies the force-displacement relation.

The present observation that the crack bridging force decreases with the fiber
inclination appears to be in contradiction with Wetherhold's simple analysis'1 which
concludes that the bridging force should increase with the fiber inclination angle. It
must be pointed out that the results of the present study are obtained for the case
where the fiber pullout dominates the total bridging force. Such cases include those
with large embedded fiber length (e.g., the embedded length more than 20 times of the
fiber radius for present study) and high interfacial shear strength and frictional shear
stress. For very short whiskers or elongated grains, or very low interfacial shear

strength and frictional shear stress, increased frictional shear or interlocking due to
whisker inclination could dominate the bridging force. In this case, the bridging force
is expected to increase as a results of whisker inclination angle until whiskers fail or
the matrix spalls. Indeed, high values of the coefficient of friction (greater than unity)
required for parametric fitting of crack resistance curves in some alumina ceramics
using a grain-bridging model can be attributed to geometrical irregularities including
grain interlocking. 10 Based upon the foregoing discussion, it is clear that there is no

general trend for the effect of the fiber/whisker inclination angle on crack bridging. It
is determined by other factors in addition to the fiber/whisker inclination angle. The
present study covers a limited range of these factors, and further studies are required
to obtain a complete quantitative picture.
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List of Figures

Fig. 1. Schematic of the DCDC specimen in which 2H is the specimen height, 2W

is the specimen width, t is the thickness, r is the radius of the center hole, a
is the crack length, and aa is the applied compression stress. For the

Janssen geometry, HI W = 10 and W/r = 3.75.

Fig. 2. Schematic of crack bridging in the DCDC specimen: (A) Fibers at an

inclination angle 0 bridge the DCDC cracks; (B) Representation of the

bridging force by traction force Pit. The distance from the crack tip to the

bridging force, or the bridging distance, is denoted by b.

Fig. 3. Crack bridging relations in the DCDC fracture mechanics specimen

showing the normalized change in the stress intensity as a function of the

normalized bridging distance for different crack lengths. The results were

obtained using a finite element analysis. The dimensions of the DCDC

specimen are: HIW = 10, W/r = 3.75, and r = 0.795.

Fig. 4. The dimensionless geometric function of the DCDC fracture specimen

obtained experimentally.

Fig. 5. Examples of the results showing the applied stress intensity vs. the

normalized crack length for the cases: (A) without fibers, (B) fibers at

0 = 00, (C) fibers at 0 = 240 and (D) fibers at 0 = 400.

Fig. 6. Examples of the results showing the bridging force vs. the crack opening

displacement for different fiber inclination angles.

Fig. 7. The bridging force as a function of the inclination angle for different crack

opening displacements. Open symbols indicate data points from a single

test.

Fig. 8. Matrix cracking related to fiber inclination at inclination angles: (A) 80, (B)

240, and (C) 400.

12



aaa

2H

2W Thickness t

Fig. 1



bb

Pit

(A) (B)

Fig. 2



* a/r = 14

0 2 468

bir

Fig. 3



7

z6

0

+ Experimental Data
-Best Fit

3 1 1 1 1 1
6 8 10 12 14

Normalized Crack Length, Oir

Fig. 4



1.2 1 r-T-'-I rI 1.2 '

- Fiber Location

1.0 1.0

0.8 Without Fibers 0.8:
0=0

0.6 1 I , I , I 0.6 - , I , I , I
5 7 9 11 13 15 5 7 9 11 13 15

(A) air (B) air

1.2 1.2 ' I ' I
I I

t.. Fiber Location 1.0 --7Fiber Location

a I1.0 . 1.0 ,

a I

h~0.8 a b 0.8
t=240 400

0.6 , , 0.6
5 7 9 11 13 15 5 7 9 11 13 15

(C) aIr (D) aIr

Fig. 5



15 . .. i *15 ** * * * *

S10 ~ 4 10

5 5

0 0~ ~ * 0 0 =0

0 5 10 15 0 5 10 15

(A) COD (um) ()COD (jim)

15 15

110 10

0 5 1015 0 5 015

C)COD (pum) ()COD (p~m)

Fig. 6



15 i * i '15 * ' '

COD =2p~m. COD= 4 m

10 - 10-

15 * 5

00

0 .1 a l5

0 10 20 30 40 50 0 10 20 30 40 50
(C) Inclination Angle, #'(degree) (B) Inclination Angle, #'(degree)

COD=6gmFig 7 3CD8u



Fig. 8



APPEDIX 2

Presented at the 16th Annual Conference on Composites and Advanced Ceramics
sponsored by the American Ceramic Society
Cocoa Beach, FL, January 7-10, 1992

FIBER DEBONDING AND PULLOUT PROCESSES
IN CERAMIC COMPOSITES

D.R. Mumm and K.T. Faber
Northwestern University
Department of Materials Science and Engineering
Evanston, IL 60208-3108

The fiber debonding and pullout behavior in a model ceramic composite system has

been investigated using a novel single-fiber pullout technique. Stable, progressive

debonding was observed prior to fiber fracture and frictional fiber pullout. Interfa-

cial parameters were calculated from single load-displacement curves using a recent

analysis of the fiber debonding and pullout process. The interfacial parameters

extracted from these experiments are consistent with independent measurements

reported in the literature. The morphology of the fiber surface appears to play a

significant role in determining the fiber debonding and sliding behavior.

INTRODUCTION

It is now acknowledged that the mechanical properties of fiber-reinforced ceramic
composites are controlled primarily by the interfacial properties." '2 Recognition of

the importance of the interfacial properties has prompted the development of a
number of techniques to evaluate these parameters, including the fiber pullout 3 4

and pushdown' tests. The work described here utilizes a variant of the fiber pullout
technique.

Extraction of interfacial properties from single-fiber pullout tests requires fitting
of the experimental data to appropriate micro-mechanics based models of the fiber

debonding and pullout process. A number of such analytical models have been

developed recently with varying assumptions and approximations. A recent analysis
by Kerans and Parthasarathy, 2 which has been used to analyze fiber push-down

data,6 is also applicable for the fiber pullout experiment. The model is based on

progressive debonding of the fiber and accounts for the thermal mismatch of the
fiber and matrix, including the residual axial stress, and specifically addresses the

role of fiber surface asperities.
The model2 considers a fiber of radius r embedded in a cylinder of infinite radius

of the matrix with a length L protruding from the matrix. The response load P. is



related to the displacement at the end of the fiber during progressive debonding as
follows:

l.P. 1 - 2vf k [p (PdP (PP- ) 1 (1)
7r2E 2Akr~ Pd +Pr - P. + P -P n nsii

where k is given as:

k E,.v (2Ei(1 + .) + E.(1-v) (2)
and Ef and Em are the elastic moduli of the fiber and matrix, v! and Vm are the
respective Poisson's ratios and p is the friction coefficient. The parameter P, is the
residual axial load on the fiber due to thermal expansion mismatch between the
fiber and matrix:

P, = -(AaAT) rr2E{1+2k} (3)

where Aa is the thermal expansion coefficient difference for the matrix and fiber
(am - a1 ) and AT is the change in temperature over which the residual stresses
develop.

The term Pd corresponds to the critical axial load in the fiber at the debond crack
tip necessary to propagate the debond crack. It is directly related to the critical
strain energy release rate of the interface according to:

G 4=(1 2, !k)Pd (4)
C 4ir2 r 3 Ef

P" is a critical axial load on the fiber at which Poisson's contraction completely
counteracts the residual normal stress and the surface asperity effects such that
there is no frictional resistance to sliding. When the response load P. equals P*,
the debond crack will propagate through the specimen at constant load with a fixed
length frictional sliding zone behind the debond crack tip. P" is directly related to
the effective normal stress at the interface, ,f f, as follows:

p= a f r r 2 (5k )
It is our intent in this study to use a unique single-fiber pullout technique to

experimentally investigate the progressive debonding behavior in a model ceramic
composite. The role of the interfacial friction, interfacial debond energy, residual
stress state and fiber surface morphology will be explored. The results are to be
analyzed with the model discussed above to extract interfacial properties from the
progressive debonding portion of individual load-displacements curves.



EXPERIMENTAL PROCEDURES

For this investigation, single-fiber composite specimens were fabricated from SiC
monofilaments" embedded in a soda-borosilicate glass t . The SiC monofilaments are
produced by chemical vapor deposition (CVD) of SiC onto a 33pm diameter carbon
core. The CVD process results in a high degree of surface roughness, which has been
shown to have a profound effect on the fiber debonding and sliding behavior. The
surface of the monofilament consists of two carbon rich layers which are believed to
provide the weak interface necessary for fiber debonding and pullout.

The samples were prepared by hot-pressing in an argon atmosphere at tempera-
tures of approximately 750*C for 15 minutes under a stress of 5.0 MPa. To fabricate
samples with the geometry discussed below, it is necessary to have the embedded
fiber parallel to the faces of the hot-pressed disk. To accomplish this, one half of the
glass frit was cold pressed into the hot-press die under a stress of approximately 3.0
MPa. The top ram was removed and a segment of the monofilament was placed into
the die. The remaining glass frit was then cold pressed into the die at an equivalent
stress. The die was then loaded into the hot-press and processed according to the
conditions outlined above.

The sample geometry that was developed and adopted for use in these experi-
ments is shown in Figure 1. A rectangular block of the matrix contains a single fiber
running down the axis of the sample. The sample was notched to have a greatly
reduced cross-section at the midpoint of the sample.

This modified single fiber pullout geometry was chosen to provide a more realistic
modeling of the fiber debonding and pullout process during composite fracture rela-
tive to the standard single fiber pullout geometry used in previous studies. 4,s During
the testing procedure, a crack is propagated through the matrix leaving the fiber as
a bridging element. Therefore, an artificial surface is not used to model the matrix
crack and any artificial barrier to debond initiation is avoided. The interaction of
the matrix crack with the fiber to initiate debonding is more clearly represented.

The machined samples were directly bonded to the load train of a standard
mechanical test frame: using a cyanoacrylate based adhesivel, taking care not to
bond the exposed fiber ends, as indicated in Figure 2.

During the pullout test, the matrix crack opening displacement (COD) was mea-
sured using a traveling microscope attached to a digital micrometer.1 The microm-
eter was interfaced to a data acquisition system which simultaneously recorded the
load. The crosshead speed was held constant at 10,um/min.

"SCS-6 SiC Monohlament, Textron Specialty Materials, Lowell, MA
tPyrex #7740, Corning Glass Works, Corning, NY
:l~ntron 4505 testing machine, Imtron Corporation, Canton, MA
1Duro Quick Gel, Loctite Corporation, Cleveland OH
1Mitutoyo digimatic micrometer head, MTI Corporation, Paramus, NJ



RESULTS AND DISCUSSION

Representative data for these experiments are shown in Figure 3, where two sets
of data are superimposed. The load increases continuously with the crack opening
displacement until fiber fracture. The non-linearity in the initial portion of the data
is expected as the compliance of the sample increases with progressive debonding.
After the sharp drop in load, the load decreases further with decreasing embedded
length as the debonded fiber is frictionally pulled out of the matrix.

It is interesting to note that, although the peak loads and the COD's at the peak
load for the two data sets are very different, the final pullout lengths are nearly equal.
Furthermore, the magnitude of the peak loads and the large load drop with fiber
fracture indicate that the debond crack had progressed far ahead of the eventual
fiber fracture point.

Figure 4 demonstrates the application of the Kerans and Parthasarathy model2

to the data, showing the saturation load P" as well as the debond propagation load
Pd. Fiber fracture occurs well before the saturation load P" is reached.

The Kerans and Parthasarathy model (Equation 1) ias fit to individual data sets
using a three-parameter non-linear least squares"l fitting routine. For the sample
geometry used herein, the initial length 1. is zero and the first term of Equation 1
is omitted. The fitted parameters p, Pd, and P" for each of the data sets shown in
Figure 3 are reported in Table 1. From these fitted parameters, the effective normal
stress and the interfacial strain energy release rate were calculated, and are also
reported in Table 1.

Table 1: Fitted parameters
Data Set 1 Pd (N) P" (N) aef f (MPa) Gi (

1 0.144 1.17 104.9 201.0 0.24
2 0.138 0.89 100.4 192.4 0.14

The strain energy release rate is found to be very low, consistent with the weak
interface expected in these materials. The friction coefficient agrees well with the
measurements of Parthasarathy, et al.6 for fiber pushdown experiments in similar
materials and the measurement of u for graphite sliding on glass by Gupta.9

The calculated effective normal stress accounts for both the residual thermal
mismatch stress and the fiber surface asperity effects, according to the following
relation: 2

=nf Ej1z)E,,(-v (AaAT +A) (6)
E" f =E(1 + ,.,) + B.(I - ;f!)r

where A is the fiber surface asperity amplitude. The radial thermal expansion

IDowahMl Simpkz Optimisation Method



coefficient for the SiC monofilament has been measured by Goettler and Faber 4 to
be 2.63 x 10's/ 0 C. Taking AT to be the strain point of the glass minus ambient, and
with a thermal expansion coefficient for the borosilicate glass of 3.5 x 10- 1/ °C, the
residual normal stress for this system is calculated from the first term of Equation 6
to be 20.7 MPa. The fiber surface asperity amplitude can then be determined
from Equation 6. The asperity amplitudes calculated for data sets 1 and 2 are
0.26 and 0.25pm, respectively. These values agree very well with the independent
measurements of Jero, et al.' 0 who used an optical interference technique to directly
measure the surface roughness. Their results indicate that the average fiber surface
asperity amplitude is 0.09-0.1814m with larger asperities up to 0.36 jm.

The frictional pullout portion of the load-displacement curve can be used to check
the consistency of the fitted parameters obtained from the progressive debonding
portion of the data. The post-fiber-fracture embedded length is related to /, P*,
and the applied load P. by the following relation:2

le=rI (P ) (7)

If the friction coefficient is taken to be equal to that measured from the progres-
sive debonding data, the effective normal stress at the debonded sliding interface
can be calculated. The embedded length during pullout is approximately equal
to the final pullout length, measured after the test is complete, minus the matrix
crack opening displacement. The measured pullout lengths and the P" values cal-
culated from the data immediately following fiber fracture are reported in Table 2.
The P* values obtained from the parameter fit of the progressive debonding are
shown for comparison. As P" is a direct measure of the effective normal stress, very
good agreement is found in the interfacial parameters obtained from the progressive
debonding data and the frictional pullout data.

Table 2: Post-fiber-fracture analysis
Data Set Pullout Length (1m) P; (N) P. (N)

1 762 109.4 104.9
2 728 116.5 100.4

SUMMARY

A novel modified single-fiber pullout technique was utilized to investigate the fiber
debonding and sliding behavior in a model ceramic composite system. Progressive
debonding was observed, consistent with recent analytical models. The morphology
of the fiber surface appears to have a significant effect on the fiber sliding behavior,
both during progressive debonding prior to fiber failure and during frictional fiber
pullout following fiber fracture.



The Kerans and Parthasarathy analysis 2 was used to extract interfacial parame-
ters from the progressive debonding portion of single load-displacement curves. The
data from these experiments agree with the model predictions, and the interfacial
parameters calculated from the experimental data are consistent with independent
measurements reported in the literature.
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APPENDIX 3

TENSILE FRACTURE OF FIBER-REINFORCED COMPOSITES:
INFLUENCE OF THERMAL RESIDUAL EFFECT

W. B. Tsai and T. Mura
Department of Civil Engineering and Theoretical and Applied mechanics,

Northwestern University, Evanston, IL 60208, U.S.A.

Abstract-The inclusion model is used to analyze the tensile fracture of
fiber-reinforced brittle-matrix composites containing many
unidirectionally aligned continuous fibers with uniform strength. During
the debonding of fiber-matrix interfaces, the fibers slide against the
friction which is caused by Poisson effect and thermal expansion
mismatch. In general, three fracture mechanisms including interfacial
debonding, matrix cracking and fiber failure may occur in some sequence.
The sequences are strongly influenced by the thermal residual effect due
to temperature change AT. The analysis provides explicit crack
length/applied stress relation for each mechanism. Fracture maps are
constructed to analyze the influence of thermal residual effect on the
fracture sequences and final composite strength. Two categories of
fracture transitions are defined analytically for the large crack limit.

1. INTRODUCTION

In a brittle matrix composite containing unidirectionally aligned
fibers, three fracture mechanisms are commonly expected, including
debonding of fiber-matrix interfaces, matrix cracking and fiber failure.
Using the standard fracture mechanics approach, Marshall et al. (1985,
1987), Budiansky et al. (1986) and McCartney (1987) analyzed the
influence of material parameters such as frictional shear stress, fiber
strength and interfacial fracture toughness on the fracture mechanisms.
The mechanics of the crack bridged by fibers can be also analyzed by the
inclusion method (Mura, 1987). Mori and Mura (1984, 1988) investigated
the effect of fibers on the arrest of a crack for the complete bridging and
complete sliding cases. Yang et al. (1991) extended this analysis to the
case of partially debonded fiber-matrix interfaces assuming a constant
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friction was present in the debond region. Tsai and Mura (1991) further

considered the origin of friction which is the Poisson effect and thermal

expansion mismatch. Similar subjects were studied by Gao et al. (1988),

Sigl and Evans (1989), Hutchinson and Jensen (1990). In this paper, the

authors emphasize the influence of thermal residual effect on each

fracture mechanism. For instance, the threshold stress for debonding

initiation increases as the thermal residual effect is reduced. The reason

will be discussed later.

The present analysis also provides the fracture criterion and the

unique relation between crack length and critical applied stress for each

kind of fracture mechanism. Consequently, it is possible to construct the

fracture maps shown in Fig.8 and Fig.9. Sequences of fracture

mechanisms and final composite strength are easily obtained by drawing

crack extension paths in the fracture maps. Also, the large crack limit will

be discussed at the end of this paper. Two categories of fracture

transitions will be defined and critical conditions are given in terms of

material properties.

2. MODEL AND ANALYSIS

2.1 Inclusion model and stress analysis

Consider a composite containing many aligned and randomly

distributed continuous fibers of radius r and avcragc spacing X.
Perpendicular to the fiber direction is a matrix crack (Fig.1). The shape of

the matrix crack is approximated by a thin oblate spheroid as2 X 2

£0: 2+ 3<1 , c<l. (1)
a2 C0

2  a
a is the radius of a penny shape crack. co is the half of the fictitious

thickness of the crack. The absolute value of co does not appear in the

relevant equations to be derived later. The cross section of a fiber in the

crack is also approximated as
2 2

f2: 1 2+ 1 + X3° <<1 (2)

2

Co 2 __



When an uniform tensile stress GA at infinity is applied in the direction

normal to the crack surface, the eigenstrain £3, for the equivalent

inclusion method is introduced to simulate the bridged crack. Specially

£33 in DO -Ds (3)

E;3 = aEp in 0 s. (4)

Here, a is the parameter characterizing the frictional sliding of fibers

along the fiber-matrix interfaces. There are two extreme cases
illustrating the physical meaning of a. First, complete bridging (a = 0, no

sliding of fibers) occurs. Second, complete sliding of fibers (a= 1) takes

place. The general expression of a will be derived later when we discuss

the crack wake frictional sliding of fibers. According to the averaging

processes employed by Mori et al. (1983), one obtains the average internal
stresses in 2, - K2, and fl',, given as

/3)f2 \ - -/hrCo E, fiT rco(I-a)E(

0-/ -2(1-, u)a 20(1- )r
-ffu o rCo (I- a)4F f-nCo (l- a)E

(033)0S- --- -- + 2(-- V'. 2(1- ")r (6)

Here, < > denotes the average defined in the respective domain. i is the

shear modulus and V is the Poisson ratio of the composite. f is the volume

fraction of fibers and equals to rr2/ 2 . To satisfy the traction free condition

on the crack surface

+- 0S =0, (7)
0

EP is obtained as

2(l- V)0-A a

jirc o I+(1-a) f

The total stress of the fiber in Q's (bridged domain), sum of the external

and internal stresses, is written as

-T = CA + (" 3 3 ). (9)

Using Eq.(5), (8) and (9), the total stress (bridging stress) is given below:
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a (-a)
a

19 = 1aI r (10)

r

2.2 Analysis of frictional sliding of fibers

(determination of a)

In this section, the authors investigate the mechanism of frictional

sliding of fibers to determine a. For simplicity, one considers a rod-

cylinder model consisting of a rod (fiber) embedded in a cylinder (matrix),
Fig.2. In the debond region with length l, there exists a frictional shear

stress c which is proportional to the normal pressure p at the interface.

Through the detail derivation in Appendix A, the stress fields in the

debond region are evaluated as follows:

f3 = c[ exp( 1x3 /r) - 1] + TT (11)

aym = -c exp13x r) - 1](12)

T = -(13c/2)exp(P_C3 /r) (13)

p = (1c/2p)exp(13x3/r) (14)

where
fl= 2,

C = PQ+ ( vf (7U1J ]7.

r and C are expressed in terms of Young's modulus E, E, Poisson ratio vf ,

v,, and fiber volume fraction f in Appendix A. jL is the friction coefficient.

A(Q is the residual thermal strain defined as

A2= (am -aff)AT (15)

where af and a. are the thermal expansion coefficients of fiber and matrix

respectively, AT(< 0) is the temperature change from the stress-free

temperature of matrix to the operating temperature. The interface is

subject to compression only when p is negative. According to Eq.(14),

following condition must be satisfied
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AQ+(vfuaT/Ef )<O. (16)

Through the whole paper, condition (16) is always assumed. Now, one can
calculate the crack opening at the bridged domain due to the elastic
extension of the fiber out of the matrix. The crack opening displacement is

defined as

3=2 U - U (17)
~f mx =0

3

One can integrate £f and Em given in Appendix B from 0 to ld such that u1

and u. at the crack plane are obtained. The crack opening displacement is

found to be

05= E r[ lep(pld/1) -i] +±21,~L~ + Ef f)C -&].

(18)

From the eigenstrain approach, the crack opening is defined as

5 = 2coaEPe =4rI1- T)(-a) r  (19)

at the bridged domain 0,. By setting Eq.(18) equal to Eq.(19), cc i s
determined and expressed as

-1

Tr + - f c-Af2

a= 1+2(1-V) E Era(f) ]r

=+ exp(d/r) -

(20)
It is clear that a = 0 as Id = 0 (no sliding), a = 1 as Id -- c (complete sliding

for a continuous fiber).

2.3 Analysis of debond length
The debond length a be determined by using the energy balance

approe .h. If the debond crack extends by an incremental amount di at
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constant Or, several different kinds of energy change will occur and reach

to the equilibrium state. The strain energy is increased by dE, work is

done by traction stress aT, with magnitude dwT, frictional energy dwf is

dissipated, debonding energy dwd is absorbed during interfacial debonding.

The energy balance condition, at 1= ld, can be formulated as below:

dwT -dE s - dwd - dw f =0. (21)

Dividing each term by the incremental debond length dl, one can change

Eq.(21) into the following expression:

dwT dE dw dw fs -a+ (22)'

dl dl dl dl
Each energy term is derived in Appendix B. For small exponent index

Old/r, Eq.(22) is used to obtain the approximate value of ld

where
g(o)=D 2 T + D aT

D2 = -2r7;vf +E

E
f

D =E AQ -1- 2rq" +-f f (; m

h(a ) =D62 C2 
+ DI CU T +Doc

D2 =- i[vf V l E  f If

JEf
f (1-f)Em

0 rc 2 -3Iam -af]
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Here, p is defined in Appendix B. Furthermore, substituting Eq.(23) into

Eq.(20), one can obtain the approximate value of a for small P1l/r as

1-1+ q )U(l_ [)oT h( ) l(Ef
(24)

In Eq.(24), a is a function of bridging stress OT and several material

constants.

2.4 Energy calculation for a bridged crack

2.4.1 Elastic and external potential energies

In order to calculate the energy release rate during the crack

growth, the Gibbs free energy of the composite under an applied stress is

evaluated when the configuration of Fig.1 is simulated by inclusion !Qo and

inclusions Q,. Also, the matrix is approximated by the homogeneous

medium with the composite moduli j! and V. According to the definition

(Mura, 1987), the Gibbs free energy is

F=-f I "f2 a dv-f, f1 dv (25)2 ao 33 33 0o7 3

where 03 is given by Eq.(5) and Eq.(6), c;3 is given by Eq.(3) and Eq.(4).

Substituting them into Eq.(25), F is evaluated as
4(1- " )a3 (CFA) 2 1+(1-a 2)af

F =-r2 (26)3f" I1 +(1_ a)af]2(6

By definition, the energy release rate of a crack is written as

G= d(27)
d ra 2

which is evaluated below:
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3 - a)(5 +4a) ±2(1-a)a a a f
G=- Go 3 1d )

3[ 1+( - a).f] ±[2(l _ a)2 (I + a)±+2(1 - aadr a I( r
(28)

whereGo-= (1 - )(CTA )2a/;r7
Go is the energy release rate of a penny-shaped crack in the homogeneous

medium without fibers. (aa/Da) can be evaluated by the following

procedures: First, one can substitute Eq.(24) into Eq.(10) and obtain

a T - 1+ /1 (f GS ')] T-2 12 C - 'AS2j

CyA - J-C 4y u7 (l-_) a T h(ao) jkf
(29)

Second, (aa/aa) is equal into (0c/T)!(a/>aT). Using Eq.(24) and Eq.(29) to
obtain (a/0aT) and (aa/aoT) individually, one can calculate (aa/aa)

analytically or numerically.

2.4.2 Dissination energy and debonding energa

The crack opening in K', is achieved when the fiber extends out of

the matrix. This is an inelastic deformation, confirming to the definition of
eigenstrain aEP. Before the fiber begins to slide, interfacial debonding

must initiate at first. Therefore, dissipation energy due to the work

against friction and debonding energy needed to create new surface at the
interface can contribute to the increase of crack resistance. One can

define the total dissipation energy and the total debonding energy as

follows:

Wd= 2N[21rrJ'd ruf - U .)dxJ (30)

Wdeb.= 2N(27rrldGs) (31)

where
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N ra2  a2

N is the amount of fibers bridging the matrix crack. 2N represents the
amount of debond lengths on the both sides of the matrix crack. Using
Eq.(B7)and Eq.(B8), one obtains

dW dis. 3 ( 2 rE(d ] + a( (32)

7ra2  TTf(Ld) 'dLdaj2dl da

dWdeb. 2fG [ 2 +a dd (33)
dira2  r da

where

l(a (pC2 -Ca r + cEf A2). (34)

One can do (ad/aaT), (a/beT) and (dI(a,)/dr) using Eq.(23), (29) and (34).
Then, (ald/aa) and (aI(,3,)/a) are calculated by applying the chain rules of

differentiation. The total crack resistance is defined as
dw dw

R=G + dis. + deb. (35)c d7ra2  dOra 2

where Gc is the inherent fracture toughness of the matrix, the second and

third terms on the right-hand side of Eq.(35) are the additional crack
resistances due to frictional sliding and interfacial debonding,

respectively.

3. DISCUSSION

In this section, we are going to discuss how the thermal residual
effect influences fracture mechanisms such as interfacial debonding, fiber
failure and matrix cracking. Following parameters are used for numerical
calculation: E1 =580 GPa, Em,=41OGPa, v• = 0.23, vm=0. 19 , af =4.8x 10

-6 ,

a. = 8.9 x 10-6, f = 0.2, p. = 0.1, r =0.4 pLm, G, = 30Jim 2 .

3.1 Fracture mechanisms

3.1.1 Interfacial debonding
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It follows from Eq.(23) that i,-d0 as a, approaches to E.
Accordingly, Z is a threshold stress for debonding initiation. One can
obtain I by solving the following equation:

2E G s

g(Cr) - =0 (36)
r

which has the solution

aX .u D+,ID 4 +D8EfGo~ =2- / D1 + fD 1)Y + D f (37)

In Fig.3, it clearly shows that I increases as G, increases for the same AT.
Also, for the same Go, I decreases as IATI increases. The reason is before
debonding, when IATI becomes larger, the fiber is under higher residual
compression in x3 direction and the surrounding matrix is under higher
residual tension. After debonding, the fiber tends to extend and matrix
tends to shrink naturally because of relaxation of axial residual stresses.
So, debonding initiation is easier to occur. The same tendency was also
predicted by Hsueh (1991) for the case of isotropic thermal expansion
coefficients of the fiber. Eq.(37) reconfirms the previous conclusion that I
is lower as r is larger (Yang et al., 1991). Replacing aT in Eq.(10) by X and
letting a = 0 for 1, 0, one obtainsa

- = ( f(38)r
where X is a function of AT and G. For given AT and G, , curve of Eq.(38),

debonding initiation, is shown in Fig.4. As air >> 1, GA has an asymptotic

value:
YAf. (39)

If the Poisson effect and thermal expansion mismatch are ignored by
setting vf =0 and AT =0, one obtains D2 = 1/2 and D, =0. The threshold

stress is expressed as
4EG s

F - (40)
r

which is exactly identical to that of the frictionless case studied by
Outwater and Murphy (1969).
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3.1.2 Fiber failure

It is assumed that fibers have the averaged uniform strength S.
Fiber failure occurs when bridging stress reaches fiber strength. i.e.

aT =S. (41)

Substituting Eq.(41) into Eq.(10), one obtains
a- a) (42)
r

where

as a(S) Z<S<-EfAI2/Vf

Replacing aT by S, a(s) is obtained from Eq.(24). Fig.5 is the plot of Eq.(42)
for two different AT and S . Obviously, as S increases, CA must increase to

cause fiber failure for the same crack length at the same AT. It is worth
noting that there is a critical value of strength S, to separate the opposite

effects of AT through a s in Eq.(42). As S < Sc, larger IAT (larger a.) causes
fiber failure at larger applied stress. As S > S, larger IATI ( smaller a,)
results in fiber failure at smaller applied stress. Only when S = So, these

two AT has the same effect on fiber failure mechanism. Fig.6 shows the
relation between a, and S for two different AT. From Eq.(42), one obtains

the asymptotic value of Ca as air >> 1:
A J 'S (43)

3.1.3 Matrix cracking

During crack growth equilibrium between energy release rate

(crack driving force) and the crack resistance can be expressed by

G=R (44)
Substituting Eq.(28) and Eq.(35) into Eq.(44), one obtains the critical value
of CT causing matrix cracking. a. is expressed as a function of CA and a.

This function can be substituted into Eq.(29) to plot the curve of matrix

cracking in Fig.7. One can also prove numerically that
dG dR> - (45)

d7ra2  dna 2
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which is satisfied for any given critical applied stress q. Therefore, the
matrix crack always grows unstably at a,. As air >> 1, the asymptotic
values of G and R are written below:

G = 4(1 - T)r1(a)2 1+a (46)
0- 3 ir'f (I- a) (6

R =G + deb. (47)0 C dra2 ) dra2 A0
where

Ira 2 (oT)1 (48)dz 2  E f

S deba2  = 4 fGsla/r ) . (49)

According to Eq.(29), as a/r 00, aT approaches to a/f. Therefore, one can
replace a, by aA/f to obtain the asymptotic expressions of 1d , a and I(a,)

from Eq.(23), (24) and (34), respectively. Generally, fracture criterion,
Q- = R-, yields an algebraic equation for critical applied stress ac-. For
complete bridging case (a = 0), G and R can be evaluated analytically as
follows:

G Go 3+ 2f a/r (50)a = 0 3(l + fa/r)2

R =G (51)
a= 0 C'

The asymptotic values of Ga=o and R,=o, respectively, are given by
- 2Go  (52)

(Ga = )i r

(Ra = 0) = GC. (53)

Letting Eq.(52) be equal to Eq.(53), the asymptotic value of critical applied
stress is given as

3 rfifG (54)

(cr)a = o0- 4(l--)r(54)
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For the given material parameters in the section of discussion, Fig.7

shows the curves of matrix cracking for two different AT. For the same
crack length, smaller IAT makes matrix cracking occur at slightly lower

applied stress. One can not see much difference between these two curves.

However, if one uses the curves of Eq.(38), Eq.(42) and matrix cracking to

construct the fracture map as a (air vs aA) diagram, AT will show its

influence on the crack extension paths and final failure mode of a

composite. Fig.8 and Fig.9 are the fracture maps for larger and smaller
IATI, respectively. For a large crack, path (A) shown in Fig.8 hits the curve

of interfacial debonding first. Further increase of aA to point A will result

in matrix cracking through whole matrix with no fiber failure. It is a non-

catastrophic type of failure and a precursor of multiple matrix cracking

causing larger nonlinear strain. The final composite strength can be
defined as IS from Eq.(43). For smaller JAT (smaller residual effect), path

(A) shown in Fig.9 also passes the curve of interfacial debonding but
increasing aA causes fiber failure directly without matrix cracking. It is a

catastrophic type of failure. The composite strength is determined by

point A obtained from Eq.(42). For intermediate and small cracks, path (B)
and (C) in Fig.8 indicate that debonding, matrix cracking and fiber failure

occur in sequence. The composite fails catastrophically at stress level of
point B and C for intermediate and small cracks, respectively. Composite

strength is predicted by substituting initial crack length into Eq.(44). In
Fig.9, there is a critical point 0 associated with initial crack length a. For

an intermediate crack, a > a, path (B) passes through the curve of

debonding initiation and reaches the curve of fiber failure. It implies that

the whole composite fails catastrophically at point B which is determined
by Eq.(42). For a small crack, a < ao , path (C) is similar to that in Fig.8.

From the comparison between Fig.8 and Fig.9, one can discuss how AT

changes the fracture mechanisms of a composite as well as the final
composite strength for a given initial crack length. Generally, the
fracture map is also useful to discuss the effects of other parameters such
as G3, p, f and r on the fracture mechanisms of a composite.

3.2 Fracture transition for a large crack (a/r>>l)
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Two categories of fracture transitions will be discussed in this
section. The critical conditions of transitions are also defined.

3.2.1 Complete bridging versus interfacial debonding
Using Eq.(39) and Eq.(54), one can define a characteristic constant:

4(1 - V)rf, 2
- (55)

37r-iG

As K < 1, debonding occurs at the interface before the matrix crack extends.
As K> 1, debonding can not occur during the matrix cracking through
whole matrix. Therefore, K = 1, it is the critical condition for interfacial

debonding.

3.2.2 Catastrophic failure versus non-catastrophic failure

First, K<1, non-catastrophic failure is predicted under the

condition:

fE < 0r0 < JS. (56)

Using inequality (56), one can find the range of certain parameter such as
AT, f, r et al. to facilitate non-catastrophic type of failure. Second, ic > 1,

the following inequality

(a-~)a <Jis (57)Ic a= O

ought to be satisfied for non-catastrophic failure of a composite. Inecuality

(57) can be rewritten as

4-f <I s. (58)

4(-i)r

It is noticeable that AT does not involve in inequality (58). It means if
interfacial debonding does not occur, residual thermal effect has no
influence on the transition between catastrophic and non-catastrophic

failure. Take the crack paths (A) in Fig.8 and Fig.9 as examples. For Fig.8,
K = 0.28. For Fig.9, K = 0.50. Both values of K are smaller than one so that
interfacial debonding always initiates before the matrix crack extends.
For Fig.8, fZ = 0.82 GPa, ac = 1.06GPa, and fS = 1.10 GPa satisfy inequality
(56). For Fig.9, fE = 1.08GPa, a,- = 1.03GPa and fS = 1.10GPa do not satisfy
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inequality (56). Therefore, non-catastrophic failure is only expected for

path (A) in Fig.8.

4. CONCLUSION

The thermal residual effect on the fracture mechanisms including
interfacial debonding, matrix cracking and fiber failure are investigated

in this paper. Combining Eshelby's inclusion method and fracture criteria
of fracture mechanics, the fracture mechanisms are governed by Eq.(38)

for debonding, Eq.(42) for fiber failure and Eq.(44) for matrix cracking.
The fracture maps like Fig.8 and Fig.9 are used to analyze the crack

extension paths and final composite strength. Comparing Fig.8 with Fig.9,

one can conclude that AT has the strong influence on the crack extension

paths and final composite strength. For the given material parameters in
the section of discussion, decreasing IAT (decreasing thermal residual

effect) undergoes the transition from non-catastrophic type to catastrophic

type of failure for a large crack in a fiber-reinforced brittle matrix
composite. In general, the conditions of fracture transitions for a large

crack are defined in section 3.2. These conditions may provide some useful

guidelines to prevent undesirable fracture mechanisms when a composite

is designed.
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Appendix A

Consider the schematic of Fig.2. Assuming zero radial stress on the
outside of the composite cylinder and using a modified shear lag model
(Sigl and Evans, 1989), the stress fields satisfy the Lame' relationships:

rr 00 P , p<O (Al)

' 2(A2)

where r~ K '[(/' )2 +f]M
rom P (r/r)

where ro is the radius of the cylinder composite, r is the fiber radius, r is

the distance from the center of the fiber to the point in the matrix and
superscripts f and m denote fiber and matrix, respectively. The
corresponding strains including thermal residual strains are

Ef = rVi -V p-v fII +af AT (4rr 00f 33E
f

= - 2 vfpI + afAT (A5)33= "33 f E

f

eM = fP[l+Vm ±(2 1-V -V (7m  AT (A6)rr If f rm mG33mAT (A7)

m

Em a m + 2 v (-PL]}I + amAT. (A8)3 33 ,-f E M

The requirement of continuity of radial displacements at the interface
r =r:

Ef = Em (A9)
yields the relation between normal pressure and axial stresses as

= -- 'M + fOf3 + A(P Em33 E 33(A10)



where

4=E flVf+ 1+-Vmj
f -vf+(lf)E (fm

Assume that the interfacial friction is governed by Coulomb's friction law
t" = -,UP (All)

where g is a constant friction coefficient. Moreover, the equilibrium
equations in the x3 direction must be satisfied within the debond region,
0 < x3 < Id. They are written as

df

a"33 _ 2 T (A12)

dx3  r

d"t'. (A13)
dx 33

Combining Eqs. (AlO), (All), (A12) and (A13), one obtains the following
differential equation

d'(f Iduf
-(0/r) 0 (A14)

d 3 2 3
where

0=2,uq , J7=- +(- "

When boundary conditions
3=oM = o -0 at x=0

33 'g 3 3 3
are applied into Eq.(A14), the solutions are shown as below:

f = c[ exp(x/r) - 1] + aT (A15)
33 L\3' j T

m = -c[exp(flx 3 /r) - 11 1-ff (A16)

S= -(3c/2) exp(x 3 /r) (A17)

where



Cr aT +Af2jJ1-.



Appendix B

Using the stresses and strains obtained in Appendix A, one can
calculate strain energy Es, energy dissipation w1 due to frictional sliding,

debonding energy w, absorbed by the interface and work w, done by the
traction stress UT. The elastic strain energies in the fiber and matrix are
associated with a 33 and e33. This estimation gives

Er 2 I(aff+(

E=tJ\ 3 3 3  33 a 3 3 ) dX3.()

The debonding energy is
wd =2irrIG (B2)

s

where G, is the fracture toughness of the interface.

The energy dissipation due to frictional sliding is

Wf.:2irJrf U dX 3U (B 3)

The work done by the traction stress is
wT= ir21T(U - U )X (B 4)WT=7r2GT ufu u 0 B4

x3=

where uf and u,. are obtained by integrating e3 and ee in Appendix A,

respectively. For small (1/r), each energy term can be simplified as

s E frr 1[i 2 -j2 f )2f + amf ajja A
2 Ef+ lr2 - V Vm - 1 C - 2caT + cE (-f f

2r2 fi m K- f)J-
(B5)

T r{[(1 2 r (1 +2 7)EA l+2Esf2r2

(B6)



_rr 3  2 _ +cEAQ1 ,=l fEf - 2

wf=Ef f 2r 2  (1-f)Em

(B7)

Wd (B 8)
where c,13, ?I& 4 are defined in Appendix A.



FIGURE LEGENDS

Fig.1 Inclusion model for the crack and the cross sections of
fibers at the crack.

Fig.2 The rod-cylinder model: bridging stress OT is balanced by
the frictional stress t caused by the normal pressure P
acting at the debond interface.

Fig.3 Threshold stress I for debonding plotted as a function of
interfacial fracture toughness G, for two different

temperature change AT.

Fig.4 Curves of debonding initiation plotted in a crack length vs
applied stress diagram.

Fig.5 Curves of fiber failure plotted in a crack length vs applied
stress diagram.

Fig.6 Sliding parameter cc plotted as a function of fiber strength.

Fig.7 Curves of matrix cracking plotted in a crack length vs
applied stress diagram.

Fig.8 Fracture map for AT=-980 0c. Dash lines (A), (B) and (C),
respectively, represent the extension paths for large,
intermediate and small cracks.

Fig.9 Fracture map for AT=-490 0c. Critical point 0 is associated
with initial crack length a0.
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APPENDIX 4

For: Materials Science and Engineering, Part A 2/15/92

Comparison of two loading configurations

in fiber pullout tests

H. CAI,t Y. MAKITA~t AND KT. FABER

Department of Materials Science and Engineering

Northwestern University

Evanston, IL 60208 (U.S.A.)

Abstract

In single fiber pullout experiments typical configurations of loading include support

of the matrix on the side of the protruding fiber and support of the matrix from the

opposite end. Single fiber pullout experiments have been conducted using these two

configurations, and the experimental results are compared. The comparison shows

that the difference in the measured fiber pullout frictional stresses between the two

loading configurations is minimal for small embedded lengths. However, the

difference increases with the fiber embedded length. Theoretical analysis predicts the

same trends with loading configuration change.

1. Introduction

Fiber-reinforced composites offer the potential to meet the demands of materials

that are light, strong and reliable. The mechanical properties of these materials

are sensitive to the fiber/matrix interfacial properties, in addition to the

t Present address: Ceramics Division, National Institute of Standards and Technology,

Gaithersburg, MD 20899. On leave from Department of Materials Science and Engineering, Lehigh

University, Bethlehem, PA.

tt Present address: Futaba Corporation, Electronic Components Division, Chiba 297, Japan.
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intrinsic properties of the fibers and the matrices [1,2]. Recognizing the importance

of interfacial properties has resulted in numerous studies to characterize the

debonding and frictional sliding phenomena [3-8]. Fiber pullout and push-down

(indentation) are the two most frequently used experimental techniques for

measuring the interfacial debonding stress and frictional stress in fiber composites.

Detailed analyses of these two different methods of loading of the fiber show

substantial differences between fiber pullout and push-down due to the Poisson effect

in the fiber [9]. In fiber pullout testing, different methods of matrix loading have also

been used, including support of the matrix opposite the side of the protruding fiber

and support of the matrix on the side of the protruding fiber,

as illustrated in Fig. 1. Such a difference in loading methods for

fiber pullout may also result in different measured interfacial properties due to

different boundary conditions. The objective of this work is to compare the frictional

pullout stresses obtained using these two methods of matrix loading during pullout.

2. Experimental procedure

The specimen geometry and loading fixtures are shown in Fig. 2 for loading

configurations A and B, respectively. In both fixtures, a self-aligning mechanism was

used to ensure good alignment for fiber pullout. In the specimen geometry for loading

configuration A, the fiber was pre-notched so that the fiber failed at the notch upon

loading and was subsequently pulled out.
In Q,

The single fiber composite consisted of steel piano wire _ acrylic§

matrix. The acrylic fails in a brittle manner at room temperature. The steel wire

has a diameter of 0.23 mm, and has a yield strength of 3 GPa, and fails with a very

small degree of yielding. Debonding and pullout of the steel wire took place at stresses

I Acrylite FF, CYRO Industries, Mt. Arlington, NJ.
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well below the yield point. The steel wire was cleaned with acetone and methyl

alcohol, and the acrylic was cleaned with methyl alcohol before being used for

specimen preparation. The pullout specimens were fabricated by sandwiching the

steel wire between two acrylic plates and hot pressing at 155±2°C. The pullout

specimens then were machined from the hot pressed samples.

Pullout experiments were performed using an Instron universal testing machinef

at a constant crosshead speed of 0.5 mm/min. The load and crosshead displacement

were recorded using a computer data acquisition system. Stick-slip behavior was

observed as the fiber was pulled out the matrix. The pullout load was taken from the

peak load of each stick-slip section. The corresponding fiber embedded length was

determined from the load-displacement curve after subtracting the displacement due

to the load train compliance.

4. Results and discussion

The results of frictional pullout stress, cp, vs. fiber embedded length, 4,, for the two

loading configurations are shown in Fig. 3 for fiber embedded lengths ranging from 2 to

12 mm. Results are shown for five pullout tests for each configuration. The dashed

line and the solid line are the curve fits to the data using function a. = c. [1 - exp(cl/e)]

for results of loading configurations A and B where co and cl are constants. While

there is a scatter in the data, a comparison of the curves shows a difference in pullout

stresses in the upper range of the fiber embedded lengths examined, with the pullout

stress for loading configuration B lower than that for loading configuration A. The

difference in the pullout stresses between the two loading configurations increases

with the fiber embedded length. It is expected that the difference would further

increase with the fiber embedded length.

t Instron Model 1125, Instron, Corp., Canton, MA.

3



The difference in the pullout stress between the two loading configurations can be

understood physically as follows. In loading configuration B, the matrix is in axial

compression. Due to the Poisson effect, axial compression increases the diameter of

the matrix hole that holds the fiber. Therefore, a lower pullout stress is expected. In

loading configuration A, axial tension in the matrix decreases the diameter of the

matrix hole that holds the fiber, and thus, a greater pullout stress is anticipated. The

Poisson effect in the matrix as observed is considerably smaller than that in the fiber

because the axial stress in the matrix is significantly lower than that in the fiber as

the matrix size is many times that of the fiber in typical single fiber pullout tests.

The experimental results of the present study are compared with the the

theoretical analysis by Hsueh [10] (see Appendix A for more details of the analysis).

It is assumed that both the matrix and the fiber display linear elastic behavior, and

that the interfacial pullout may be described by Coulomb friction. In order to

compare experiment with theory, two parameters which describe the Coulomb

friction at the interface are needed: the normal residual stress (oc) and a coefficient of

friction (u). This two parameters were obtained experimentally using a technique

described by Takaku and Arridge [11]. In this experiment, the dependence of the

pullout stress (ap) on the initial tensile stress on the fiber (ao) was determined and

analyzed using the following equation to obtained residual normal compressive stress

and the coefficient of friction:

)- [1-exp(-2k
k Of a

where le is the fiber embedded length, a is the radius of the fiber,

k = (Emvf)Ef (l+Vm)], Em, Ef, ym, and vware the Young's moduli and the Poisson's

ratios of the matrix and fiber. For the steel wire-acrylic system, the residual normal

compressive stress was determined to be 8 MPa with a coefficient of friction p = 0.5.
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With the measured normal compressive stress and the coefficient of friction, the

predicted pullout stresses for the two loading configurations are computed as a

function of the embedded length, and are compared with experimental results in

Fig. 4(a). Although the experimental and theoretical results do not agree well, the

effect of the loading configurations demonstrates the same trend, that is, the pullout

stress determined via loading configuration A is greater than that from loading

configuration B for a given embedded length.

An alternative way to compare the experimental and theoretical results is to fit

the experimental data for one loading configuration to obtain the normal compressive

stress and the coefficient of friction and to compute the expected behavior for the

second loading configuration. These results may then be compared with the

experimental results for the latter loading configuration. Such a comparison is shown

in Fig. 4(b), in which the experimental results for loading configuration A is fit into

eqn. (1) in Ref. 10 with the coefficients A, andA 2 in Appendix A, giving a normal

compressive stress of 2.2 MPa and a friction coefficient of 2.3. The theoretical

prediction for loading configuration B is computed using eqn. (8) in Ref. 10 and is

plotted along with the experimental results for the same loading configuration. The

comparison now shows good qualitative agreement between the experiment and the

theory. A difficulty with this approach is that the coefficient of friction obtained is

unreasonably high. Furthermore, the obtained values of the coefficient of friction and

normal compressive stress are inconsistent with those obtained using Takaku and

Arridge technique.

In order to gain a better understanding of the problem, the fiber surface and the

matrix surface at the interface before and after fiber sliding were examined using

scanning electron microscopy [12]. The observation shows that the matrix surface

at the interface changes significantly after fiber sliding. Loose

debris was observed on the interface matrix surface after sliding. At the same time,
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the matrix surface was roughened. Therefore, the coefficient of friction at the

interface changes with sliding and with sliding distance of fiber pullout. The normal

compressive stress might have changed also due to the matrix wearing. These

changes in the coefficient of friction and normal compressive stress with sliding

distance could explain the poor agreement between the experiment and theory, the

latter of which assumes a constant coefficient of friction and normal compressive

stress. This observation has a strong implication for extracting the interfacial

properties from single fiber pullout tests: misleading values can result from fitting the

data to models which assume constant coefficient of friction and normal compressive

stress if in reality. these parameters change with fiber pullout.

5. Summary

The fiber frictional pullout stresses of two matrix loading configurations have been

compared experimentally. The difference of results between the two matrix loading

configuration is minimal for short fiber embedded lengths. The difference increases

with fiber embedded length, indicating the need to consider the matrix loading

condition for fiber pullout with long fiber embedded lengths. A comparison between

theory and experiment was complicated by changing coefficient of friction and

probably changing normal compressive stress with fiber pullout. However, the

comparison shows a qualitative agreement, that is, the pullout stress for loading the

matrix face opposite the protruding fiber is greater than that obtained from

supporting the matrix on the side of the protruding fiber.
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Appendix A. Theoretical analysis of fiber frictional pullout

Hsueh [10] analyzed the two loading configurations (Fig. 1) for pullout tests using

an idealized model for a single fiber pullout consisting of a fiber located in the center of

a co-axial cylindrical matrix. The pullout stresses for the two loading configurations

are given by Hsueh in Ref. 10. Due to the length of the equations, they are not

reproduced here.

In Hsueh's work [10], an approximation of the shear stress distribution in the

matrix results in a finite value of shear stress at the outer surface of the matrix.

Hsueh [13] improved the original analysis by introducing an alternative shear stress

distribution in the matrix which satisfies the boundary conditions of zero tractions on

the cylindrical surface of the matrix. The results of the pullout stress are the same

as those given in the original work [10], with the exception of changes in coefficient A1

and A2, which are given as [13]:

A, = a (1 - b2/a2) D (Al)b_ 2
__ (b2 -a 2) (3b 2 -a 2) (Al

2 Vm (1 + Vm b2 _ a2 b2 n(b/a) 4b 2

(1 - b2/a 2) (Em vf/Ef Vm) -1 (A2)
A2 2 .( . b 2  l (b/a - a 2) (3 b 2 -a 2)  (A2

2vm(1+vm)b 2 2 [b2n(b/a) - 4b

The effects of this change on the pullout stress is very small. However, the new

solutions are used because they satisfy the boundary conditions of free tractions on

the outer cylindrical surface of the matrix.
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Figure Captions

Fig. 1. Schematic of the two matrix loading configurations used in fiber pullout tests:

(a) support of the matrix opposite the side of the protruding fiber and (b)

support of the matrix on the side of the protruding fiber.

Fig. 2. Schematic of specimen geometry and loading fixture for: (a) loading

configuration A and (b) loading configuration B.

Fig. 3. Experimental results comparing frictional pullout stress for the two different

loading configurations examined.

Fig. 4. (a) A comparison of experimental results and theoretical predictions based on

an independent measurement of the normal compressive stress and

coefficient of friction; (b) A comparison of experimental results and

theoretical prediction for configuration B. The normal compressive stress

and coefficient of friction were obtained by curve fitting the experimental

results to Hsueh's theory [10,13] for configuration A.

10
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APPENDIX 5

Inverse Problems in Linear Elasticity
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Tatsuhito Koya
and

Toshio Mura
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Abstract

Some inverse problems in linear isotropic elasticity are considered. The problems

of interest in this paper are Cauchy problems (see [1]) that cannot be solved

directly; therefore, special techniques involving transformations are required.

The regularization method employed by Gao and Mura [2] and Yeih, et. al. [3, 4]

are examined in order to improve efficiency and computer implementation. At

the same time, an alternative method based on the classical least-squares

method is proposed.

1. Introduction

Consider the following problem. A thin rectangular plate is maintained at zero

temperature along the three edges x = 0, x = a, and Y = 0. The fourth edge Y = b is

I



subjected to a temperature distribution f(x) (see Fig. 1). We would like to

calculate the temperature distribution when steady-state is reached.

This is a typical Laplace problem. The temperature distribution is governed

by the Laplace equation,

d 2 (P+ 2 ° =O,(1V2 ( = d d-  (1)

and the solution is

(p(x, y) c. sin n x sinh(nry/a) (2)
n=1 a sinh(nrb/a)'

where c=- ff(x)sin nff-dX, (3)
a a

assuming this series is convergent.

Now, consider the following problem. Instead of prescribing temperatures

along all edges, we prescribe a temperature f(x) and a flux de)p/1dy,= = g(x) along

y = b, and keep the remaining edges free (see [5]) as shown in Fig. 2. We would

like to calculate the temperature distribution.

Unlike the first boundary-value problem, the second one is categorized as a

Cauchy (initial-value) problem (see [1]), and it is a type of inverse problem. The

given data (boundary conditions) in this problem are called the Cauchy data.

Tikhonov, one of the first pioneers of the inverse problem, stated tb:t to solve an

inverse problem means to discover the cause of a known result. Therefore, he

continued that all problems of the interpretation of observed data are actually

inverse [6].
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Although his description seems to indicate that both first and second

problems are inverse; however, in almost all cases, we distinguish the first one

from the second one and call the first one a forward (regular) problem and the

second one an inverse problem. The inverse problem usually involves drawing of

a conclusion (cause) from incomplete information. Only incomplete information

may be obtained because the points of interest are visually hidden, or the sensors

cannot simply reach those points.

Two of the first classical works on the inverse problem may be attributed to

Legendre [7] and Gauss [8] when they independently calculated the trajectory of

Halley's comet from discrete observed data by means of the least-squares

method. Today, the inverse problem is receiving more attention, particularly in

the field of design optimization (e.g., Sobieczky [9] and Staniz [10]).

2. Inverse Problems in Linear Elasticity

Let us see how the inverse problem fits in linear elasticity. Historically, inverse

problems in elasticity date back as far as 1907 to Alamansi [11]. A more recent

work was done by Gao and Mura [2] and Yeih, et. al. [3, 4].

Consider the following problem. An thin circular disc of a radius r = 1.0m and

elasticity constants E=500MPa and v=0.3 is subjected to a radial load

p = 2.OMPa as shown in Fig. 3. If we eliminate rigid body motion, the x and y

displacements along the edge are

cos=(.7 Co
250 (4){2 =0.7 sin(e).
250
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Now, consider the following problem. The same disc is subjected to the same

radial load and displacements given by (4) along the edge ranging 0 5 0 zr as

shown in Fig. 4. Can we find the tractions and displacements along the

remaining edge r< 8<21r assuming that the disc is in static equilibrium?

Obviously, the solutions are

p = 2cos(e),

py = 2 sin (0),

0.7 (5)u1 = -cos(0),
250

u, = 0.7 sin(0).
250

This inverse problem is simple because of the problem's simple geometry and

loading condition; however, how can we treat inverse problems that have

complicated shapes and loading conditions?

3. Numerical Approach

When a body has a complicated geometry and is subjected to complex

displacement and loading conditions, there is very little hope to solve the

problem analytically. In general, such a problem is solved numerically by means

of the finite element method (FEM) or the boundary element method (BEM):

J BTDBud2 = J Nd.Q, FEM
0 1 (6)

1Nu+JTNudF=fUNtdF, BEM
r r
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normal derivative, Q is the body, and F is its boundary which is assumed to be

smooth in this case (the presence of % coefficient). Two major differences between

these methods is that FEM solves a domain integral equation whereas BEM

solves a boundary integral equation, and FEM solves for displacements only

whereas BEM solves for both displacements and tractions. Both methods employ

discretization of the domain of integration; consequently, FEM requires to

discretize the entire body whereas BEM requires to discretize its boundary only

when body forces are neglected.

At the first glance, because FEM requires prescribing of the conditions inside

the body, this method is not suitable for our purpose. On the other hand, because

BEM requires prescribing of the conditions along the boundary only, we will

employ this method to solve Cauchy problems.

4. The General Numerical Procedure to Solve Integral Equations

Before proceeding to solve Cauchy problems, we first look into the procedure to

solve an integral equation numerically. Consider the following integral equation,

f- 'u(x ") = cos(zx'), 05 x' :1. (7)
0, 2

The exact solution is

2  2 cos(lrx), (8)

and we would like to approximate this solution numerically.

We use the 3-pt Gauss-Legendre quadrature to evaluate the integral in (7).

The formula is
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We use the 3-pt Gauss-Legendre quadrature to evaluate the integral in (7).

The formula is

3

ff(x) dx =JYf (c + J , )w,, (9)
i=1

where J = (b - a)/2,

c = (b + a)/2,

= 0, 3 (10)

w = {5/9 8/9 5/9}.

We do not know the values of u at the points of evaluation (sample points).

Therefore, we have three unknowns and require three equations to solve for

them. We choose the same points for x' in order to create three equations. In

essence, we have transformed an integral equation into a system of

simultaneous equations,

0.0278 -0.4965 0.0250 0.93801
0.1232 0.1565 -0.3889 'u 2 = 0 (11)

-0.2813 1.1517 0.1972 11u 3 J -0.9380J

The solution is

u={-1.6030 1.2101, 4.0248} (12)

which is in good agreement with the exact solution,

u={-1.6019, 1.2159, 4.0336}. (13)

As the number of points increases, the accuracy of solution increases as

shown in Fig. 5. The rate of convergence depends on the numerical integration

6



scheme. Fig. 5 uses the trapezoidal rule, which is not a powerful scheme, in order

to illustrate this point. This method of solving integral equations is called the

Nystrom method (see [12]).

5. The Compatibility Condition of the Cauchy Data

In Section 4, we saw how an ordinary integral equation can be solved by the

Nystrom method. Now we look into the Cauchy problem and pay special

attention to Laplace-type problems as shown in Figs. 1 and 2. But, first, we list

here 3 types of boundary-value problem (see [1, 13]):

i. Dirichlet Problem: Only T' is prescribed along the boundary. There exists a

unique solution.

ii. Neumann Problem: Only the normal derivative dVp/dn is prescribed along

the boundary. The solution may not exist, or even if it does, it is not unique by an

arbitrary constant.

iii. Mixed Problem: Either (p or dgp/dn are prescribed along the boundary.

There exists a unique solution.

Bearing in mind the above problem types, we recall Green's second identity

(see [1]),

¢(x' X rf [ n dG(X, X (x)-G(x,x') dr(x) (14)
r dndPx]d

where G is the Giaen's function for the Laplace equation. This identity states

that when both (p and d(op/dn are prescribed along the boundary, (p inside the

7



domain can be uniquely determined. However, this statement is in contradiction

to the uniqueness of solution of the Dirichlet problem. If we already know q

everywhere along the boundary, cannot we determine (p uniquely without

necessitating the knowledge of dq/dn? For this reason, we cannot arbitrarily

prescribe 4p and dip/dn on the same boundary (Cauchy data) and solve the

Cauchy problem directly. This difficulty raises the compatibility condition which

must be imposed on q' and Aqpdn.

Let us assume that the boundary F, q,, and dqp/dn are parametrically

representable by the variable s, so that we can write F(s),qp(s) and dq(s)/dn. In

two dimension, the normal derivative d3p(s)/dn is written as

LT, = V4-n q9 , +dqP, (15)-rV.n=- +-n(15

dn dx 1  dy

dy
where n = (ds' (16)

dxny TS

Also, we can write

do = dp dx d dy (17)

ds -x s ys"

Therefore, the only unknowns are dip/dx and dp/dy; consequently we can form a

system of simultaneous equations,

[dx dy ird(o] d~p 1
I _ dds ds dx _(18)

dy dx d (p
[ds ds iidyiI dnJ

8



The above system is solvable as long as the coefficient matrix is nonsingular.

We then proceed to compute the second derivatives,

a29, d dv
x2 dx dx' (19)

d'(q d d9
dy 2  dy dy

We take advantage of the chain rule again to form,

dx dy d d1
xs ds (20)

y d n= J

whence

d dy dx
dx _I TdS ds S (21)

dy S ds ldn

where C + (L _s (22)
ds) ds)

The computed second derivatives must satisfy the Laplace equation,

d2P + d2-p = 0.  (23)
dx 2  dy 2

The Cauchy data are then compatible.

9



6. Numerical Difficulties in Solving Cauchy Problems

Consider a domain £2 which is bounded by a boundary F. The Laplace equation

holds inside this domain. Denote a part of the boundary as F, and the remaining

part as F, so that F= F + F. Suppose the Cauchy data (potential and flux) are

prescribed along r. We would like to compute the potential and flux along F2.

For the simplicity sake, we assume that the Cauchy data are compatible, and

with the Cauchy data, we can carry out the integrations along F in (14) and

denote the sum as b(x'),

b(x')= [G(xx') p(x)  G (x x') ] d. (24)r,. dn dn ¢~)d.(4

Consequently, Green's second identity is reduced to

+ a a,(x) =b(x'), x'r 2. (25)
r~l dnan I

We do not wish to keep x' inside £2 since we do not have any information as to

the value of p. When x' is placed on the boundary F and if the boundary is

smooth, (25) can be rewritten as

1(,) + f[dG(x,x') qi(x) - G(x,x,) ]dF=b(x,), X' F. (26)
2 r2 an G d~' n ' bI XX

We apply the Nystrom method here. Let us use the Nth order numerical

integration scheme to rewrite (26) as

2 N(x'+ [dn V(x)-G(x,,x') n "b(x') X'EF, i=1,...N. (27)

10



From (27), we see that we can construct one equation at each sample point.

However, there are 2 unknown quantities, q and dp/dn at each sample point, so

that there are more unknown than the number of equations. In general, we

cannot solve this system of equation directly. The dimensions of the coefficient

matrix are N by 2N, and even if all the equations are independent, there is an

2N - N = N different dimensional family of solutions. There is no known method

to determine the correct solution directly.

There is a way to reduce the order of dimensional family of solutions, however.

Since there is nothing to prevent us from placing x' in (27) on 11, we can increase

the number of equations without increasing the number of unknowns. In the

present case, if we choose N points on f-, we can have an 2N x 2N system of

equations which we may be able to solve directly. It should be pointed out here

that although we seem to construct a well-balanced system of equations by this

scheme, it is not always the case as we will see later.

7. The Regularization Method

When a system of simultaneous equations is ill-conditioned, that is, the

coefficient matrix is nonsquare or singular, we cannot solve it by means of

Gaussian elimination for example. In general, we cannot expect an extremely

good solution from an ill-conditioned system; however, we can obtain a probable

solution by imposing extra conditions as to the nature of the solution. Gao and

Mura [2] introduced the regularization method by applying an integral

transformation to the original integral equation (e.g., (26)). Although their

transformation is theoretically valid, computer implementation of the resulting

multiple integral equation is difficult and not numerically efficient. It is more

11



convenient if we apply a linear algebraic transformation to the numerical

equation (e.g., (27)). Let us write (27) in the linear algebraic form,

Ax = b (28)

where the vector x contains the unknown (p and dp/d)n. Because A is either

nonsquare or singular, its inverse does not exist. The approach Gao and Mura [2]

took was to minimize the L norm of x subject to (28) or

minimize 1x112  (29)

subject to JlAx - bl 2 < e, (30)

where Ix112 = _Vx. (31)

The constant E is user-defined. The Lagrangian function for this problem is

L(x; a) = axTx - (Ax - b)T(Ax - b). (32)

The corresponding Euler equation (see [14]) is

(ATA + aI)x = ATb, (33)

so that the solution is

x = (ATA + al)-'ATb. (34)

The value of a has to be determined recursively until (30) is fulfilled.

The computer implementation of (34) is far easier than that of Gao and

Mura's multiple integral equation. However, computing ATA is susceptible to

numerical roundoff errors and not generally recommended. If A is a full rank

12



matrix, the QR decomposition (see [15]) may be helpful, but we would like to

consider a more general case. We introduce here the singular-value

decomposition (SVD) technique (see [15]). Basically, the SVD decomposes A into

A = UZV T, (35)

where the elements of the diagonal matrix I are called the sing-ular values of A.

The matrices U and V are unitary matrices, that is,

u T u = I, (36)

VTV = I.

After substituting (35) into (33), we obtain

(,+ aZ-)V Tx = U Tb, (37)

and the solution (34) becomes

= V(z+ ay -)-'UTb. (38)

The solution by (38) is easier to control because we are tampering with the

singular values only which directly affect the condition number of A. Also,

although two matrix inversion are involved in (38), because the matrix Z is a

diagonal matrix so that it is a matter of inverting the diagonal elements. The

regularization method coupled with the SVD is recommended to deal with all

kinds of Cauchy problem.

13



8. The Least-Squares Method

The least-squares method has been used for many inverse and optimization

problems. Legendre [17] and Gauss [8] used this method to solve one of the first

inverse problems. We employ this method here coupled with the SVD introduced

in the previous section.

Given an equation Ax = b, the least-squares method is derived as follows. We

would like to minimize (extremize)

JlAx - b1l2  (39)

with respect to x. This gives rise to

d(XTAT Ax-2xTA T b+bTb)= 0, (40)

or

ATAx = ATb. (41)

This equation is known as the normal equation. Commonly, (41) is solved by

means of the QR decomposition (see [15]) because of the suceptability of the ATA

computation to roundoff error. The decomposed normal equation becomes

Rx=Q T b. (42)

The above equation is merely a backsubstitution operation.

The use of the QR decomposition is valid as long as an rn x n matrix A has a

rank n, so that ATA is a full rank matrix. However, many inverse problems have

a less than rank n matrix. Consequently, the QR decomposition cannot be used.

14



In these cases, we employ the singular value decomposition technique. The SVD

decomposes A into

A=VIU , (43)

where VTV = 1, (44)
UTU = I.

Then (41) is reduced to

£V Tx = UTb. (45)

Consequently,

X = Vj-lUTb. (46)

Notice the resemblance between (38) and (46). If we let a in (38) go to zero, the

two equations are the same. Therefore, the regularization method and the

least-squares method are very similar; however, they are not the same. While the

regularization method attempts to balance the order of singular values, the

least-squares method cuts off numerically negligible singular values. Therefore,

the regularization method is a full expansion whereas the least-squares method

is a tuncated expansion.

9. Linear Elasticity Problems

We now apply the least-squares method to some two dimensional isotropic linear

elasticity problems. The basic equation we use here is known as Somigliana's

boundary integral equation (see [16]),

15



lu,(x') + f Tij(x,x')uj(x)ds(x)- f U,,(x,x')t,(x)ds(x ), (47)

2 F

where Uj(x,x')= -1 {(3-4v)n(r)i -r rj},
8 7r( - v)G

T(X, X') = - (1- 2v)8 + 2rirjj rn - (1- 2v)(i.nj -

j) -"( i  
/2

r=(- xI) (48)
r= xi -x',

r, . drX"dr r

cdx, r'

n= Normal vector,

6j= Kronecker delta,

G = Shear modulus,
v = Poisson's ratio.

The boundary F is assumed to be smooth as shown in Fig. 6 because the constant

depends on the smoothness of the boundary.

Let us consider a mixed boundary-value problem first. For the sake of

simplicity, let us suppose that displacements are prescribed along a part of F

denoted by F, and tractions are prescribed along the remaining boundary

denoted by F, so that F = fr + 12.After we move the unknown displacement and

traction terms on the left side of (47) and the known displacement and traction

terms on the right, we obtain

I +
r2 r,

=-JT(x,x')uj(x)ds(x)+ fUj(x,x')t,(x)ds(x), (49)
r, 12
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where the position of the first term on the left-hand side is not necessarily on

this side. If x' is on F, this term moves over to the right-hand side.

In general, these integrations are carried out numerically, and the one of the

most common techniques associated with integration is to discretize (subdivide)

the domain of integration into smaller subdomains or elements. Then (49) is

rewritten as

1 M +N M,

u.(x')+ MJ(7,.(,,x.)x)U,(x(,))ds(x(f))- f J(x),x')tj(x(.))ds(x.))
411 ps

M M+N

=- f I 'A(X kn),x')Uj(x.))ds(x.))+ I fUij(x(R),x')tj(x())ds(x()), (50)

in which F and F are divided into M and N elements, respectively. We apply a

Qth order numerical integration technique to (50), but instead of giving the

values of the displacements and the tractions at each sample point exactly, we

approximate these values by based on P values in each element, that is, we

appriximate the displacements and tractions in each element by

P.,(WO) = Ys1"'(0U).,(_))
M=1 (51)

t,,WO)= IS* (0))(X()), -1 -5 <-1,

where the function S is called the shape function. After we substitute (51) into

(50), we carry out the integration and obtain
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1 M+N Q P

U IX) I I I T

jui(x") + X ,f)) ),x" ~m((k))u(x)Jx( I)
n=M+l k=1 m=1

M Q P

I~ I Xi U(X(") ((k) ,) Sm)( (k))tj (X(.) ) j(X(f)(4(k)))n=1 k=1 m=1

=_111T x~)~c)x~sm~j u (' ))j(X(n)(c4(k)))
=1 k=1 M=1

M+N Q P

+ I 1Y (x(f)(())x) (52)
n=M+l k=1 M=1

In the case of the constant approximation (P = 1), there are 2(M + N) unknowns

(displacements and tractions) as shown in Fig. 7, and we require the same

number of equations in order to solve for them. Because at each x' we can

construct two equations, we choose x' at the same points as x (see Fig. 7).

Moreover, because the displacements and tractions are given on the right-hand

side of (52), we can simplify the right-hand side terms. If we write (52) in matrix

form it becomes

[T -U]{u} = b, (53)

or even more simply,

Ax = b, (54)

where A =[T -U], (55)

x={u t}T.

If the coefficient matrix A is well-conditioned, x can be solved by a simple

technique like the Gauss elimination. This is the starndard boundary element

method solution.
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10. Cauchy Problems in Linear Elasticity

We now examine some Cauchy problems in isotropic linear elasticity. Let us first

consider a general problem. We can modify the problem in the previous section

and state that both displacements and tractions are prescribed along 1, and no

values are prescribed along r2 (free boundary). Then we have to modify (49) as

r2  r

T-jj(x,x')uj(x)ds(x) + f Ui(x,x)t,(x)ds(x). (56)
r r

When (56) is discretized as (49) was discretized into (52) then into (54), it again

becomes the same form as (54). However, under the constant assumption the

total number of unknowns in this case is 4N (2 displacements and 2 tractions at

each point), and the total number of equations is still 2(M + N). Therefore, the

coefficient matrix A is nonsquare, and we cannot employ a simple technique to

solve the simultaneous equations.

We might be tempted to choose M = N so that the coefficient matrix to be

square, but this scheme usually does not work for the following reason. Suppose

1, covers only 1% of the entire boundary and the free boundary F, covers the rest.

In this case, even if we construct a square coefficient matrix by taking M = N, it

is still highly singular unless the elastic domain and the loading have a high

degree of symmetry. In general, however, this is not the case.

To overcome the difficulty of constructing a nonsingular square matrix we

require special techniques such as the regularization method and the

least-squares method. Once the integral equation (56) has been converted into

the form (54), the procedure is identical as explained in Sections 7 and 8.
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Sample Problem 1

We employ the least-squares method discussed in Section 8 to solve the following

problem. The upper half of a circular disk of radius 1m is under radial pressure

of 2MPa as shown in Fig. 4. The center of the disk is fixed and its Young's

modulus and Poisson's ratio are 50OMPa and 0.3, respectively. The

displacements along the upper half boundary are given as

uX =- -cos(0) m,
35 (58)

uy = 1 sin(0) m, (O<50ur).

From these information, we would like to compute the displacements and

tractions along the boundary of the lower half of the disk.

The exact solutions are

1

u = -cos() m,

u, = sin(0) m, (59)
325

=2 cos (0) MPa,
ty = 2sin(0) MPa, (x_0:_2r).

We use 40 equal length constant elements for the prescribed and free

boundaries. The prescribed boundary F is along (0:5 _6 ir) and the free boundary

T, is along (ir < 0 < 2 r). After we substitute them into (56) and convert into a form

of (54), and apply the least-squares method, we obtain the results as shown in

Figs. 8-11.

We notice that even though the solutions seem to agree with the exact

solutions, there are still significant discrepancies between them. We investigate
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cause of this discrepancies a little further. Suppose we solve a mixed

boundary-value problem of the same elastic body with the following boundary

conditions:

u., = 0 at 0 = Yr/2 and 3U/2,

u, = Oat O = 0 and r, (60)

t, = 2cos(0) MPa,

ty = 2sin (0) MPa, (0:5 0<2D).

We use the same discretization as before. Then we obtain the results as shown in

Fig. 12. It seems to indicate that for the current discretization the displacements

in (58) are not compatible with the given tractions. It seems to make more sense

to prescribe the displacements obtained from this mixed boundary-value problem

in place of (58). The results of solving this Cauchy problem are shown in Figs.

13-16. The results are in better agreement.

Sample Problem 2

A side (x = 1/2) of a thin square plate of side 1m is pulled by a uniform traction of

10,00OPa as shown in Fig. 17. The displacements along this side is measured

Young's modulus and Poissofi's ratio are 30MPa and 0.25, respectively. We would

like to compute the displacements and tractions along the remaining sides.

In this problem, the measured displacements are the displacement solutions

for the mixed boundary-value problem in which the boundary conditions are

given by
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u. =Oat x=0,

u, = 0 everywhere

t = 100 Pa at (x = ± 1/2, - /2_ y < /2), (61)
t. =0Oat (-1/2 < x <2,y =±+12),

t, = 0 at (x =+±1/2,-1V2!5.y 5lV2).

Unlike the circular disk in the previous problem, this plate has sharp corners

(geometric singularities). We would like to see how the least squares method

works with this type of irregularity (discontinuity). Figs. 18-21 show the results,

and we see that the results are not as good as ones for the previous problem. The

farther away is the point of interest, the worse become the solutions.

Sample Problem 3

A circular elastic disc embedded in another thin elastic body and loaded as

shown in Fig. 22. The boundary of the outer elastic body is composed of straight

lines denoted by (D, 2, @, T, and ®. Suppose the Cauchy data (displacements and

tractions) are prescribed along () and e. We would like to compute the remaining

boundary values. The Cauchy data are the displacements and tractions

computed by solving the corresponding mixed boundary-value problem. A total of

144 constant boundary elements are used. The resulting deformation is shown in

Fig. 23. The Cauchy solution agree with the mixed boundary-value solution.

Conclusions

Cauchy problems in linear isotropic elasticity are solvable although not directly

by means of the regularization method as well as the least-squares method

coupled with the singular value decomposition. Unlike the regular

boundary-value problem, the Cauchy problem is very sensitive to compatibility
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among the Cauchy data. Feeding the exact solution does not necessarily

guarantee a good solution. The accuracy depends heavily on how the body in

equation is discretized. The Nystrom type solution simplifies implementation on

computer and improves performance.
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Figure Captions
Figure 1. A regular boundary-value problem.
Figure 2. A Cauchy problem.
Figure 3. A regular elasticity boundary-value problem.
Figure 4. A elasticity Cauchy problem.
Figure 5. The Nystrom solution comparison.
Figure 6. The parameters in Somigliana's boundary integral equation.
Figure 7. A discretized boundary.
Figure 8. The Cauchy solution for the x displacement.
Figure 9. The Cauchy solution for the y displacement.
Figure 10. The Cauchy solution for the x traction.
Figure 11. The Cauchy solution for the y traction.
Figure 12. The inherent errors in discretization.
Figure 13. A more compatible Cauchy solution for the x displacement.
Figure 14. A more compatible Cauch, solution for the y displacement.
Figure 15. A more compatible Cauchy solution for the x traction.
Figure 16. A more compatible Cauchy solution for the x traction.
Figure 17. A thin square plate under load.
Figure 18. The Cauchy solution for the x displacement.
Figure 19. The Cauchy solution for the y displacement.
Figure 20. The Cauchy solution for the x traction.
Figure 21. The Cauchy solution for the y traction.
Figure 22. A more complicated problem.
Figure 23. The Cauchy solution for deformation.
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APPENDIX 6

Load Diffusion and Absorption Problems from a Finite Fiber to Elastic Infinite

Matrix by the Equivalent Inclusion Method

Ven-Gen Lee and Toshio Mura
Theoretical and Applied Mechanics

Northwestern University
Evanston, I11 60208

Abstract

The load transfer behavior of a finite fiber perfectly bonded to an infinite matrix of

distinct elastic properties is investigated in this paper. The fiber is subjected to the

uniform distributed loading applied at infinity or on one cross section of the fiber. The

stress disturbance due to the existing fiber is simulated by the equivalent inclusion

method, which formulates the inhomogeneity problem to a system of integral equations.

By dividing the fiber into finite numbers of ring elements with uniform distributed

eigenstrains, the integral equations can be further reduced to a system of algebraic

equations with coefficients expressed in terms of the integrals of Lipschitz-Hankel type.

Numerical results are presented for resultant axial force for various fiber length and

material properties. The limiting cases of the infinite and semi-infinite fibers are also

compared with the exact and approximate solutions.


